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A Full-Wave Analysis of Microstrip
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CHIN SHIH, RUEY-BEEI WU, SHYH-KANG JENG, MEMBER, IEEE,
AND CHUN HSIUNG CHEN

Abstract — A novel full-wave analysis of microstrip lines is presented.
Wheeler’s mapping, which is useful in the quasi-TEM analysis of micro-
strip lines, is combined with the full-wave variational formulation to
facilitate a finite element solution. This desirable mapping not only trans-
forms the problem domain into a finite region, but also overcomes the field
singularity on the strip edge. Compared with other known techniques, the
present method makes fewer assumptions, and is more rigorous as long as
the strip thickness is negligible. Numerical results for the frequency
dependence of effective dielectric constant, the characteristic impedance,
and both longitudinal and transverse current distributions on the strip are
also included.

I. INTRODUCTION

ICROSTRIP HAS BECOME the most popular and
Mimportant element in microwave integrated circuits
(MIC’s) and microwave networks in the band 1~ 30 GHz
{1]-[4]. In earlier work microstrip was regarded as a quasi-
TEM mode transmission line [5]-[8]. Hence the resultant
parameters, such as the effective dielectric constant and
characteristic impedance, are independent of frequency.

In order to examine the dispersion characteristics, several
methods [9]-[19] have been developed. Most of them first
derived an integral equation in terms of current or charge
on the strip, then made an approximation for the current
or charge distributions by physical intuition to carry out
numerical analysis. Daly tried the finite element method
[17]; however, he solved only the closed microstrip line,
and did not take good account of the boundary and edge
conditions on the strip. Others developed dispersion mod-
els [18], {19] through approximating the microstrip lines as
suitable waveguides, which are easier to analyze.

Recently, some authors [20]-[22] have made efforts to
solve numerically current and charge distributions on the
strip by Green’s function techniques. The approximate
close forms of current distributions which are independent
of frequency and dielectric constant are obtained from the
complicated quasi-static solutions.
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This paper proposes a rigorous method based on confor-
mal mapping and variational reaction theory [23] to im-
prove the numerical accuracy. This idea has been used
successfully in handling various open dielectric waveguides
[23], such as image guides, strip guides, and channel guides.
However, due to the existence of field singularities on the
edge of the open microstrip line, microstrip line problems
would be more difficult to solve than dielectric waveguide
problems. In this article, Wheeler’s mapping [7], [8] will be
used to take care of these singularities. Thus, the current
distributions on the strip can be obtained with minimal
approximations. Also computed are the effective dielectric
constant and characteristic impedance.

II. VARIATIONAL REACTION THEORY

This section summarizes the basic notion of the varia-
tional reaction theory (VRT), which constructs a varia-
tional formulation to EM field problems. We shall con-
sider a trial system in addition to the solution system (the
original system) and find a functional I of the fields in the
trial system such that its first variation 81 vanishes at the
true fields of the solution system [24].

First consider the trial fields (E, H) supported by the
trial sources (J, M):

J=v X H~ jweE

M=-v XE— jopH. (1)
Note that these sources must equal zero in the solution
system since the waveguide problem is source-free. Thus,
the reaction [25] between arbitrary test fields (8E*, 8H?)

and the trial sources (J, M) should vanish when the trial
fields are equal to the true fields, i.e.,

81 = f fﬂ (8E*-J— 8H* M) d=0 )

where the integration region £ extends over the whole
space.
The equation (2) may be simplified to

8I=0
1=/f9(17:"-f— He-M)dQ (3)

if the variation is only partially operated on the test fields
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(E¢, H*). However, too many unknowns are involved in
(3), hence, some suitable constraints are added [24] to
reduce the number of unknowns.

III. SOLUTION PROCEDURE

A. Formulation

Consider the microstrip line shown in Fig. 1, for which
we restrict the transverse components of the trial sources
to be zero. This then leads to ‘

jwe  jBEX E,
JBEX
(4)

— jop |\ H,
where (E,, I_I,) are the trial transverse field components,
and B denotes the propagation constant.
By substituting (4) into (3) the (E,, H,) variational
formulation for the microstrip line can be obtained:

8(— jopol)=8I,=0

0 -2xv,\[E,
T\ —4Xxv, 0 H)

1 txv,E4\T
o= [ [ do —— (275
Q €1, — € |\ MV H;
€, Vet |{ZXV,E,
€ertt U 16V H,

af ol Gl 15 ) o

Here the integration region £ extends over the whole x -y
plane, k, is the wavenumber in the air, 7, is the intrinsic
impedance of the air, p, is the permittivity of the air, and
u, and €, denote the relative permittivity and permeability
of the substrate, respectively. Also, the effective dielectric
constant e is defined in terms of the propagation con-
stant 8 and k, as

BV ()
=71 =% 6
€ett ( k, A, (6)
where A, and A, are the wavelengths in the air and in the
guide, respectively.

B. Virtual Field in the Image Domain

Let the space coordinate (x, y) be mapped into the
image (x’, y’) through a certain conformal mapping. Then
by the Cauchy—Riemann equation, the variational formu-
lation (5) in the image coordinate can be reduced to

81’=0

A T
ZXV/E}
= [l e
' € |\ MoV H;
&  —eur zxv'E)
€etr B v/ H,

E; Te, 0\
_kgf_/;rdﬂ’J(noHZa) (0 —u,)(noH) (7)
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Fig. 1. Geometry of microstrip line.

Here and throughout this paper, the superscript ’ denotes
the corresponding variables or operators in the image
domain. The integration region {2’ is the image of the
original region . Note that the forms of the functionals in
(5) and (7) are almost identical, except that the second
term must be multiplied by a Jacobian J in the image
domain. .

The quantities (E/, H/) in the image. domain (named
the virtual transverse fields) can be used to recover the
transverse fields (E,, H,) in the original space domain:

E,= |\1/z}’| [cos(®, +0)x+s1n(<I> +6)7] (8)
— _|H/|

=7 [cos(®@, +8)% +sin(®,+8)5]  (9)
E!=|E/|(cos®,% +sin®, ) (10)
H! =|H/|(cos®,% +sin®, ). (11)

Here, ®, and ®, denote the angles between the two
components of E’ and H/, respectively, while § denotes
the argument of the flrst derlvatwe of the mapping func-
tion. ~

C. Wheeler’s Mapping

We will show below that if Wheeler’s mapping [7] is
used for (7), the edge condition can be handled by the
Jacobian J, and there will be no singularities in (E;, H).
Wheeler’'s mapping f(z’) and its Jacobian are

z——f(z)——{]w+d1anhzl—z] (12)

2

J(z') = (13)

d
[(1+coshz ) —1]

where z(=x+ jy) and z’(=x'-+ jy’) are the complex
numbers that represent the points of the original and
image domains, respectively. In (12), d is a parameter
which depends on the height 4 of the dielectric and the
width w of the strip. Do not confuse z here with the
spatial z coordinate defined earlier.
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MAGNETIC WALL

Fig. 2. Half structure and subdivisions in original ( x, y) domain.

The Jacobian around the strip edge is found to be
(14)

where r is the distance from the edge in the original
domain. Since the transverse fields near the strip edge
would be proportional to r~/? the values of the virtual
transverse fields become smooth and finite. Hence, the
transverse fields can be obtained indirectly without the
problems of singularities by first calculating the virtual
transverse fields, and then dividing them by the square
root of the Jacobian.

Jor near the edge

D. Finite Element Method

The fields in the image domain can now be solved
numerically through the finite element method. From the
symmetry with respect to the y—z plane shown in Fig. 1,
we may place a magnetic wall at x =0 if only the lowest
mode (E, even and H, odd) is concerned. We now only
need to consider the half structure shown in Fig. 2.

For convenience, the triangular clements in Fig. 3 are
chosen.in the image domain. In each element, the field v
which represents £, or nyH, is written as

W) = LB ) as)

where ¢, is the field value at node i of the element, and B,
is a quadratic interpolation basis function [26]. The in-
tegral over each element, furthermore, is approximated by
the seven-point Gauss-Hammer quadratic formula [26].

After expanding ¥ in each element by (15), the matrix
equation (16) can be obtained by the Rayleigh—Ritz proce-
dure [24]:

(16)
Here ¥ is the column vector corresponding to the nodal
unknowns, and both 4 and B are known sparse matrices.
Although A is not positive definite, (16) can still be

effectively solved by the determinant search together with
the inverse iteration method [27].

AV =k2B-V.

/

y
A

- X

Fig. 3. Corresponding subdivisions in image (x’, y’) domain (number

of elements = M X M} = 5X5=25).

IV. RESULTS AND DISCUSSIONS

Based on the variational conformal mapping technique,
a Fortran program has been implemented on the Vax-
11 /780 computer. To check the validity and accuracy of
this technique, the effective dielectric constants of several
typical microstrip lines (e,=8 and w=/h=0.005A,~
0.4\ ) are investigated by choosing various discretizations
for the mesh division. It is found that a moderate mesh
division of 9X9 =281 elements is usually enough to give
results with four-digit accuracy.

Numerical results for the characteristics of the micro-
strip line, including the effective dielectric constant, the
current distributions on the strip, and the characteristic
impedance, will be presented and discussed in this section.

A. Effective Dielectric Constant

In Fig. 4, the effective dielectric constants for several
structures are presented. Qur computed results for the case
with strip width 3.17 mm agree well with Itoh’s [13] and
Denlinger’s [16] results, especially below 10 GHz. For
higher frequency, Itoh’s and Denlinger’s results become
inaccurate because their approaches have to assume the
forms of the current distributions, and a rough guess of
current distributions may result in error at higher frequency
[28]. This point will be further verified by showing the
current distributions in the next subsection. Our results
should be more appropriate even at higher frequency,
because we make minimal assumption for the current
distributions.

Table IIT of [29] is reproduced here in Table I. On the
whole, there exist discrepancies of less than 0.5 percent
between our results and Kobayashi’s. For several cases, the
discrepancies may be up to 2 percent.

The relative wavelengths (A ¢/ No) for several dielectric
constants €, are shown in Fig. 5. Except that they are
somewhat lower due to shielding, our results are in agree-
ment with those of Itoh and the experimental data by
Cohen [13].
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Fig. 4. Effective dielectric constant versus frequency (h=3.04 mm,

w=1216, 3.17, 1.216 mm, and ¢, =11.7). Denliner {16] ————; Itoh
[13] —-—-— -—; present method .
TABLEI
EFFECTIVE DIELECTRIC CONSTANT
h/
NG 0 0.005{ 0.08] 0.1 ] 0.2 | 0.3 0.4| 0.7] 1.0
e\’/n
2
0.4 1.60424| 1.605| 1.632] 1.670} 1.743| 1.800| 1.846| 1.920} 1.956
2 1 1.64721} 1.648| 1.685] 1.730| 1.807| 1.859| 1.894] 1.947| 1.969
2 1.69845] 1.700| 1.748| 1.799{ 1.869{ 1.910{ 1.935| 1.969] 1.980
0.4 2.78971| 2.794} 2.933| 3.108| 3.415| 3.614| 3.737| 3.896( 3.944
4 1 2.91690) 2.924) 3.109] 3.319} 3.599| 3.746] 3.830] 3.934] 3.956
2 3.07157| 3.083( 3.319| 3.529] 3.754) 3.852| 3.893] 3.948| 3.968
0.1 5.02111} 5.033] 5.384| 5.863| 6.791| 7.365| 7.617( 7.872| 7.938
0.4 5.14654| 5.166{ 5.657| 6.238| 7.066( 7.472| 7.671| 7.881| 7.939
8 1 5.44052| 5.471| 6.130| 6.753} 7.393| 7.654| 7.778} 7.914| 7.948
2 5.80225| 5.851| 6.647| 7.205] 7.650% 7.766| 7.843| 7.928} 7.955
10 6.88551| 6.986| 7.606| 7.786| 7.925] 7.963] 7.979] 7.993| 7.996
0.4 9.86047| 9.929] 11.48] 13.10| 14.79| 15.43( 15.64| 15.88| 15.94
16 1 10.4786| 10.61| 12.61] 14.08} 15.21| 15.59| 15.75| 15.89| 15.95
2 11,2545} 11.44{ 13.71| 14.86| 15.45( 15.69| 15.79| 15.92| 15.96
0.4 75.6999] 78.66} 111.4| 122.4] 126.5} 127.3| 127.6| 127.9} 127.9
128 1 80.9649] 85.28] 117.4) 124.2) 126.7) 127.4| 127.7] 127.9| 127.9
2 87.5397| 93.64) 120.4| 125.2( 127.0{ 127.5{ 127.7| 127.9{ 127.9
r,
w/ Ao 0 10-7 10-¢ 10-8 10-4| 0.001| 0.002] 0.003| 0.004
€ h
I
81 5.4405215.4405]5.4405|5.4405]5.4405(5.4415]5.4461[5.4528]5.46]1
0 9 — — T T
T 0.7 F €r=2.65 i
s ) e e e o o]
(O] o ————
zZ Y ]
i ~ —
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] [
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Fig. 5. Relative wavelength versus frequency (A =127 mm, w=1.27
mm, and €,=2.65, 4.2, 8875, 20). Itoh [13] ————; Bhartia [1§]
—-—-—-—; experiment by Cohen [13] X X X; present method ——.
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Fig. 6. Normalized current distributions versus normalized distance
with frequencies as parameters (b =3.04 mm, w =3.17 mm, ¢, =11.7,
and frequency =1, 3, 6, 10, 15, 20 GHz). Kuester and Chang [21]
——~—; Kobayashi [20] --~-— -—; present method ——. The arrows
indicate the increase of frequencies.

10 ———1+—+rrr —— 10
8 0 8
S
= 6 06
— o
~ £
> X
X <
4 0.4 =
2 02
0 ISR TR ES WSS T VU R SO VO SRR (TR SRS SR TR 0 O
0.0 0.2 0.4- 0.5 0.8 10

NORMALIZED DISTANCE (2X/W)

Fig. 7. Normalized current distributions versus normalized distance
with dielectric constants as parameters (A =1.27 mm, w=1.27 mm,
€, =4.2, 8.875, 20, and frequency =1 GHz).

B. Current Distributions

It has been shown that the edge condition can be
handled by Wheeler’s mapping in our method. As shown
in" Fig. 6, the current distributions (I,(x)/I,(0)) and
(1.(x)/I,_ ) at lower frequency agree well with the solu-
tions by the Green function’s technique together with
quasi-static approximation [20], [21]. For higher frequency,
more energy is confined in the center region, which makes
more current flow through the strip center part. Meanwhile,
less current gathers around the strip edge and hence a
steeper slope of current ‘distribution is observed near the
edge. Obviously, this effect cannot be reflected by the
quasi-static results [20], [21], which are independent of
frequency.

Next, the longitudinal and transverse current distribu-
tions for several values of dielectric constants (¢, =4.2,
8.875, 20) at 1 GHz are presented in Fig. 7. Like
Kobayashi’s results [20] and Denlinger’s approximate rela-
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Fig. 8. Normalized current distributions versus normalized distance
with strip width w as parameters (b = 3.04 mm, w = 0.304, 1 216, 3.17,
6.08, 12.16, 30.4 mm, ¢, =117, and frequency =1 GHz). Kobayashi

[20] ———-; present method ——. The arrow indicates increasing w/h
values.
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Fig. 9. Characteristic impedance versus frequency (k= 6.35 mm, w=
254, 6.35,12.7 mm, and ¢, = 9.74) Getsinger [30] —~——; Bhartia [18]

——————— ; experiment by Getsinger [30]

; present method

tion [16], they are hardly distinguished, i.e., the current
distributions are nearly independent of dielectric con-
stants. The current distributions for different w/h values
are presented in Fig. 8. On the whole, our results at lower
frequency are in agreement with Kobayashi’s closed forms
[201].

C. Characteristic Impedance

The characteristic impedance Z, suggested by Gestinger
[30] can be evaluated either in the original domain or in
the image domain:

P —2/'/;2EIXEZ*.2dQ=2/ Q,Ef’%l?f,*'fdgl

2 2

CTILPE _
: f/ﬁ X H,-2dl

f[ﬁ X H’-2dl

(17)

where P and I, denote the total power and the total
current on the strip in the propagation direction. Qbvi-
ously, if the image-domain expression is used, the integra-
tion covers only a finite region, and will include no singu-
larities. Thus, we compute the characteristic impedance on
the image domain.

In Fig. 9, our results are compared with those of various
methods and some experimental data with shielding [18],
[30]. At lower frequency, our results are in agreement with
the experimental data. However, some numerical varia-
tions within 3 percent may appear in our computed values,
even with rather dedicated mesh divisions.

V. CONCLUSIONS

A new full-wave analysis of microstrip lines has been
presented. The method is characterized by its superiority
in handling the edge condition without resorting to any
presumed current distribution. Numerical results for the
effective dielectric constant, the current distributions, and
the characteristic impedance have also been shown and
compared with available literature. Our results reveal the
frequency dependence of the current distributions, and are
more reasonable at higher frequency.

It should be emphasized that this approach is very
flexible. It can be applied directly to microstrip lines with
inhomogeneous and even anisotropic substrates. The effect
of strip thickness can also be treated through adopting the
Schwartz—Christoffel transformation instead of Wheeler’s
mapping. Further investigation is in progress and will
appear in the near future.
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