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A Full-Wave Analysis of Microstrip
Lines by Variational Conformal

Mapping Technique

CHIN SHIH, RUEY-BEEI WU, SHYH-KANG JENG, MEMBER, IEEE,

AND CHUN HSIUNG CHEN

.4bsfract—A novel full-wave analysis of microstrip lines is presented.

Wheeler’s mapping, which is useful in the quasi-TEM analysis of micro-

strip lines, is combined with the full-wave variational formulation to

facilitate a finite element solution. This desirable mapping not only trans-

forms the problem domain into a finite region, but also overcomes the field

singularity on the strip edge. Compared with other known techniques, the

present method makes fewer assumptions, and is more rigorous as long as

the strip thickness is negligible. Numerical results for the frequency

dependence of effective dielectric constant, the characteristic impedance,

and both Iongitudhral and transverse current distributions on the stip are

also included.

I. INTRODUCTION

M ICROSTRIP HAS BECOME the most popular and

important element in microwave integrated circuits

(MIC’S) and microwave networks in the band 1-30 GHz

[1]-[4]. In earlier work microstrip was regarded as a quasi-

TEM mode transmission line [5]-[8]. Hence the resultant

parameters, such as the effective dielectric constant and

characteristic impedance, are independent of frequency.
In order to examine the dispersion characteristics, several

methods [9]–[19] have been developed. Most of them first

derived an integral equation in terms of current or charge

on the strip, then made an approximation for the current

or charge distributions by physical intuition to carry out

numerical analysis. Daly tried the finite element method

[17]; however, he solved only the closed microstrip line,

and did not take good account of the boundary and edge

conditions on the strip. Others developed dispersion mod-

els [18], [19] through approximating the microstrip lines as

suitable waveguides, which are easier to analyze.

Recently, some authors [20]–[22] have made efforts to

solve numerically current and charge distributions on the

strip by Green’s function techniques. The approximate

close forms of current distributions which are independent

of frequency and dielectric constant are obtained from the

complicated quasi-static solutions.
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This paper proposes a rigorous method based on confor-

mal mapping and variational reaction theory [23] to im-

prove the numerical accuracy. This idea has been used

successfully in handling various open dielectric waveguides

[23], such as image guides, strip guides, and channel guides.

However, due to the existence of field singularities on the

edge of the open microstrip line, microstrip line problems

would be more difficult to solve than dielectric waveguide

problems. In this article, Wheeler’s mapping [7], [8] will be

used to take care of these singularities. Thus, the current

distributions on the strip can be obtained with minimal

approximations. Also computed are the effective dielectric

constant and characteristic impedance.

II. VARIATIONAL REACTION THEORY

This section summarizes the basic notion of the varia-

tional reaction theory (VRT), which constructs a varia-

tional formulation to EM field problems. We shall con-

sider a trial system in addition to the solution system (the

original system) and find a functional 1 of the fields in the

trial system such that its first variation 81 vanishes at the

true fields of the solution system [24].

First consider the trial fields (E, H) supported by the

trial sources (J, R):

J=v XH– juc~

==–VX~–jupZ. (1)

Note that these sources must equal zero in the solution

system since the waveguide problem is source-free. Thus,

the reaction [25] between arbitrary test fields (d~”, ~~)-—
and the trial sources ( .T, &f) should vanish when the trial

fields are equal to the true fields, i.e.,

81= Jj( 8~a..f– 8Ha. @ dfl = O (2)
a

where the integration region Q extends

space.

The equation (2) may be simplified to

61=0

over the whole

I= J/( ~ ~a.~– ~.~) dfl (3)

if the variation is only partially operated on the test fields
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(~a, ~). However, too many unknowns are involved in

(3); hence, some suitable constraints are added [24] to
reduce the number of unknowns.

III. SOLUTION PROCEDURE

A. Formulation

Consider the microstrip line shown in Fig. 1, for which

we restrict the transverse components of the trial sources

to be zero. This then leads to

where (Et, fit) are the trial transverse field components,

and B denotes the propagation constant.

By substituting (4) into (3) the (E,, H,) variational

formulation for the microstrip line can be obtained:

8(– jupO1) =810=0

Here the integration region Q extends over the whole x-y

plane, kO is the wavenumber in the air, qO is the intrinsic

impedance of the air, p o is the permittivity of the air, and

pr and c, denote the relative permittivity and permeability

of the substrate, respectively. Also, the effective dielectric

constant ceff is defined in terms of the propagation con-

stant ~ and k. as

‘elf=’=’

(6)
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Fig. 1. Geometry of microstrip line,

Here and throughout this paper, the superscript ‘ denotes

the corresponding variables or c~perators in the image

domain. The integration region W is the image of the

original region Q. Note that the forms of the functional in

(5) and (7) are almost identical, except that the second

term must be multiplied by a Jacobian .l in the image

domain.

The quantities (~;, E:) in the image domain (named

the virtual transverse fields) can be used to recover the

transverse fields (Et, ~~ ) in the original space domain:

E,=y[cos(@e+o)f+sin(@e+@)Yl (8)

E( = l~~l(cos 0,1+ sin@e~) (lo)

i7; = l~~l(cos ~~i + sin~kj). (11)

Here, Q, and Oh denote the angles between the two

components of fi; and ~;, respectively, while 0 denotes

the argument of the first derivative of the mapping func-

where A ~ and A ~ are the wavelengths in the air and in the ‘lon”

guide, respectively. C. Wheeler’s Mapping

B. Virtual Field in the Image Domain We will show below that if Wheeler’s mapping [7] is

Let the space coordinate (x, y) be mapped into the
used for (7), the edge condition can be handled by the

image (x’, y’) through a certain conformal mapping. Then
Jacobian J, and there will be no singularities in (~~, ~~).

by the Cauchy–Riemann equation, the variational formu-
Wheeler’s mapping j(z’) and its Jacobian are

lation (5) in the image coordinate can be reduced to h

[

z’
z=j(z’)=— jn+dl,anh Z–z’ 1 (12)

M;= O n

[

1 2

J(z’) = ~ J—–l 1 (13)
n (1 + cclsh Z’ )

[; -:](::$) where Z( = x + jy ) and z’( = x’ -tjy’) are the complex

numbers that represent the points of the original and

image domains, respectively. In (12), d is a parameter

which depends on the height h clf the dielectric and the

-k~~~,dQJ(~~:)T(~ ~pr)(~~z). (7) width w of th: strip. ~ not confuse z here with the
spatial z coordinate defined earher.
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Fig. 3. Corresponding subdivisions in image (x’, y‘) domain (number

of elements= M; x M; = 5 x 5 = 25).
The Jacobian around the strip edge is found to be

J+r near the edge (14)

where r is the distance from the edge in the original

domain. Since the transverse fields near the strip edge

would be proportional to r– (1/2J, the values of the virtual

transverse fields become smooth and finite. Hence, the

transverse fields can be obtained indirectly without the

problems of singularities by first calculating the virtual

transverse fields, and then dividing them by the square

root of the Jacobian.

D. Finite Element Method

The fields in the image domain can now be solved

numerically through the finite element method. From the

symmetry with respect to the y – z plane shown in Fig. 1,

we may place a magnetic wall at x = O if only the lowest

mode (E= even and HZ odd) is concerned. We now only

need to consider the half structure shown in Fig. 2.

For convenience, the triangular elements in Fig. 3 are

chosen. in the image domain. In each element, the field $

which represents E= or qOH= is written as

+(X’, y’) = ~ +,ll,({,q) (15)
i+

where $: is the field value at node i of the element, and lli

is a quadratic interpolation basis function [26]. The in-

tegral over each element, furthermore, is approximated by

the seven-point Gauss-Hammer quadratic formula [26].

After expanding + in each element by (15), the matrix

equation (16) can be obtained by the Rayleigh–Ritz proce-

dure [24]:

A.*=k;B.~. (16)

Here V is the column vector corresponding to the nodal

unknowns, and both A and B are known sparse matrices.

Although A is not positive definite, (16) can still be

effectively solved by the determinant search together with

the inverse iteration method [27].

IV. RESULTS AND DISCUSSIONS

Based on the variational conformal mapping technique,

a Fortran program has been implemented on the Vax-

11/780 computer. To check the validity and accuracy of

this technique, the effective dielectric constants of several

typical microstrip lines (~,= 8 and w = h = 0.005A0 -

0.4A ~) are investigated by choosing various discretizations

for the mesh division. It is found that a moderate mesh

division of 9 X 9 =81 elements is usually enough to give

results with four-digit accuracy.

Numerical results for the characteristics of the micro-

strip line, including the effective dielectric constant, the

current distributions on the strip, and the characteristic

impedance, will be presented and discussed in this section.

A. Effective Dielectric Constant

In Fig. 4, the effective dielectric constants for several

structures are presented. Our computed results for the case

with strip width 3.17 mm agree well with Itoh’s [13] and

Denlinger’s [16] results, especially below 10 GHz. For
higher frequency, Itoh’s and Denlinger’s results become

inaccurate because their approaches have to assume the

forms of the current distributions, and a rough guess of

current distributions may result in error at higher frequency

[28]. This point will be further verified by showing the

current distributions in the next subsection. Our results

should be more appropriate even at higher frequency,

because we make minimal assumption for the current

distributions.

Table III of [29] is reproduced here in Table I. On the

whole, there exist discrepancies of less than 0.5 percent

between our results and Kobayashi’s. For several cases, the

discrepancies may be up to 2 percent.

The relative wavelengths (A.g/XO) for several dielectric

constants ~, are shown in Fig. 5. Except that they are

somewhat lower due to shielding, our results are in agree-

ment with those of Itoh and the experimental data by

Cohen [13].
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Fig. 4. Effective dielectric constant versus frequency (h=3.04 mm,
w=12.16, 3.17, 1.216 mm, and {,=11.7). Denliner [16] ––––; Itoh

[13] --- -.-; present method —.
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TABLE I

EFFECTIVE DIELECTRIC CONSTANT

0.05 0.1 0.2 0.3 0.4 0.7 1.0

0.4 1.60424 1.605 1.632 1.670 1.743 1.800 1.846 1.920 1,956
2 1 1.64721 1.648 1.685 1.730 1.807 1.859 1.894 1.947 1.969

2 1.69845 1.700 1.748 1.799 1.869 1.910 1.935 1.969 1.980
I 1 ! 1 1 1 1 1 1 1 1 I

II 0.4 I2.78971 2.794 2.933 3.108 3.415 3.614 3.737 3.896 3.944
41 2.91690 2.924 3.109 3.319 3.599 3.746 3.830 3.934 3.956

2 3.07157 3.083 3.319 3.529 3.754 3.852 3.893 3.948 3.968

0.1 5.02111 5.033 5.384 5.863 6.791 7.365 7.617 7.872 7.938
0.4 5.14654 5.166 5.657 6.238 7.066 7.472 7.671 7.881 7.939

8 1 5.44052 5.471 6.130 6.753 7.393 7.654 7.778 7.914 7.948
2 5.80225 5.851 6.647 7.205 7.650 7.766 7.843 7.928 7.955

10 6.88551 6.986 7.606 7.786 7.925 7.963 7.979 7.993 7.996

0.4 9.86047 9.929 11.48 13.10 14.79 15.43 15.64 15.88 15.94
16 1 10.4786 10.61 12.61 14.08 15.21 15.59 15.75 15.89 15.95

2 11.2545 11.44 13.71 14.86 15.45 15.69 15.79 15.92 15.96

0.4 75.699~ 78.66 111.4 122.4 126.5 127.3 127.6 127.9 127.9
128 80.9649 85.28 117.4 124.2 126.7 127.4 127.7 127.9 127.9

; 87.5397 93.64 120.4 125.2 127.0 127.5 127.7 127.9 127.9

~~.. ~~- 5 10-4 0.001 0.002 0.003 0.004

8] 1 5.44052 5.440 5 5.4405 5.4405 5.4405 5.4419 5.4461 5.4526 5.46+1”

10
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Fig. 6. Normalized current distributions versus normahzed distance
with frequencies as parameters (h = 3.C14mm, w = 3.17 mm, c, =11.7,

and frequency =1, 3, 6, 10, 15, 20 GHz). Kuester and Chang [21]
––-–; Kobayashi [20] – .– .– .–; prefient method —. The arrows
indicate the increase of frequencies.
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Fig. 5. Relative wavelength versus frequency (h= 1.27 mm, w = 1.27
mm, and C,= 2.65, 4.2, 8.875, 20). Itoh [13] ––––; Bhartia [18]

; experiment by Cohen [13] X X X; present method —.
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Fig. 7. Normalized current distributions versus normalized distance
with dielectric constants as parameters (h = 1.27 mm, w = 1.27 mm,
c, = 4.2, 8.875, 20, and frequency = 1 GHz).

B. Current Distributions

It has been shown that the edge condition can be

handled by Wheeler’s mapping in our method. As shown

in Fig. 6, the current distributions (lZ(x)/lZ(0)) and

(lX(x)/lX~~X ) at Io,wer frequency agree well with the solu-

tions by the Green function’s technique together with

quasi-static approximation [20], [21]. For higher frequency,

more energy is confined in the center region, which makes

more current flow through the strip center part. Meanwhile,

less current gathers around the strip edge and hence a

steeper slope of current’ distribution is observed near the

edge. Obviously, this effect cannot be ~eflected by the

quasi-static results [20], [21], which are independent of

frequency.

Next, the longitudinal and transverse current distribu-

tions for several values Of dielectric constants (c, = ‘4.2,

8.875, 20) at 1 GHz are pr&ented in Fig. 7. Like
Kobayashi’s results [20] and Denlinger’s approximate rela-
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Fig. 8, Normalized current distributions versus normalized distance

with strip width w as parameters (h = 3.04 mm, w = 0,304, 1216, 3.17,

6.08, 12.16, 30.4 mm, 6,= 11.7, and frequency = 1 GHz). Kobayashi
[20] ----; present method —. The arrow indicates increasing w/h
values.
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Fig, 9. Characteristic impedance versus frequency (h= 6.35 mm, w =

254, 6.35, 12.7 mm, and Cr = 9.74) Getsinger [30] ----; Bhartia [18]

– .– .– .–; experiment by Getsinger [30] –––– ; present method
—.

tion [16], they are hardly distinguished, i.e., the current

distributions are nearly independent of dielectric con-

stants. The current distributions for different w/h values

are presented in Fig. 8. On the whole, our results at lower

frequency are in agreement with Kobayashi’s closed forms

[20].

C. Characteristic Impedance

The characteristic impedance ZO suggested by Gestinger

[30] can be evaluated either in the original domain or in

the image domain:

(17)

where P and 1=, denote the total power and the total

current on the strip in the propagation direction. Obvi-

ously, if the image-domain expression is used, the integra-

tion covers only a finite region, and will include no singu-

larities. Thus, we compute the characteristic impedance on

the image domain.

In Fig. 9, our results are compared with those of various

methods and some experimental data with shielding [18],

[30]. At lower frequency, our results are in agreement with

the experimental data. However, some numerical varia-

tions within 3 percent may appear in our computed values,

even with rather dedicated mesh divisions.

V. CONCLUSIONS

A new full-wave analysis of microstrip lines has been

presented. The method is characterized by its superiority

in handling the edge condition without resorting to any

presumed current distribution. Numerical results for the

effective dielectric constant, the current distributions, and

the characteristic impedance have also been shown and

compared with available literature. Our results reveal the

frequency dependence of the current distributions, and are

more reasonable at higher frequency.

It should be emphasized that this approach is very

flexible. It can be applied directly to microstrip lines with

inhomogeneous and even anisotropic substrates. The effect

of strip thickness can also be treated through adopting the

Schwartz–Christoffel transformation instead of Wheeler’s

mapping. Further investigation is in progress and will

appear in the near future.
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